Elementary maths for GMT

Algorithm analysis

Trees

Part I: Binary Search Trees

Goal

- Analyzing data structures
- Example: binary search trees
- Overview
 - Definition
 - Properties
 - Operations
- Analyzing properties and running times of operations

Storing and modifying data

- Array
 - fast searching, slow insertion

- Linked list
 - slow searching, fast insertion

Elementary maths for GMT – Algorithm analysis - Trees

Data structures for maintaining sets

	Search	Insert
Unsorted array	$\Theta(n)$	Θ(1)
Sorted array	$\Theta(\log n)$	$\Theta(n)$
Unsorted list	$\Theta(n)$	Θ(1)
Sorted list	$\Theta(n)$	$\Theta(n)$
Balanced search tree	$\Theta(\log n)$	$\Theta(\log n)$

Trees

Each of the n nodes contains

- data (number, object, etc.)
- pointers to its children (themselves trees)

Primitives operations

- Accessing data: 0(1) time
- Traversing link: O(1) time

Binary trees

- Every node has only 2 children
 - children can be dummies

Binary search trees

- Binary trees with "comparable" values
- For a node with value x:
 - Left sub-tree contains values < x
 - Right sub-tree contains values $\geq x$

Tree property - Height

- The height h of a tree is the length of the longest path
- Property of the height: $0 \le h \le n-1$
- Example
 - height = 4

Binary tree property - Height

max

Searching for an element

- Example in a binary search tree: searching for 7
 - Start at root
 - At every node:
 - Check if you found it
 - Otherwise choose left or right child according to value in the current node
 - Until you find the value or you are at a leaf node

• Running time is O(h)

Inserting an element

- Example in a binary search tree: inserting 7
 - First search for the value 7 (previous slide)
 - If already present, then nothing to do
 - Else replace the dummy node
- Running time is O(h)

In-order tree traversal

- Visit the nodes sequentially
 - Running time O(n)

 Example when storing value x in-between visiting the children

 $- \{1, 4, 5, 6, 6, 8, 9\}$

Removing an element

(1 / 3)

- Example in a binary search tree: removing 7
 - First search for the value 7
 - If node has at least one dummy node as a child, delete node and attach other child to parent

Removing an element

(2 / 3)

- Example in a binary search tree: removing 8
 - Search for 8
 - If left (resp. right) child is a dummy node, attach right (resp. left) child to parent

Universiteit Utrecht

Elementary maths for GMT – Algorithm analysis - Trees

16

Removing an element

- Example in a binary search tree: removing 4 ullet
 - Search for 4
 - Find in-order successor (here 5)
 - it will always exists and its left child will always be a dummy node
 - Replace the node to remove with the successor node
 - Remove successor in the previously described way

(3 / 3)

Running time to find the in-order successor is O(h)•

Summary on binary search trees

Parameter / Operation	Property / Time
Height h	$\lfloor^2 \log n \rfloor \le h \le n - 1$
Accessing data, traversing a link	0(1)
In-order traversal	<i>O</i> (<i>n</i>)
Search, insertion and removal	O(h)

Part II: AVL trees

AVL tree: a balanced binary tree

- An AVL tree (Adelson-Velskii Landis) is a binary search tree where for every internal node v, the heights of the children of v can differ at most by 1
- Example where the heights are shown next to the nodes

Height of an AVL tree

- Property: the height of an AVL tree storing n keys is O(log n)
- Proof: let N(h) be the minimum number of internal nodes of an AVL tree of height h
 - N(0) = 1 and N(1) = 2
 - For h > 1, an AVL tree of height h contains at least a root node, one AVL sub-tree of height h - 1, and one AVL sub-tree of height h - 2, so N(h) = 1 + N(h - 1) + N(h - 2)
 - Since N(h-1) > N(h-2), we have N(h) > 2 N(h-2), and so N(h) > 2 N(h-2), N(h) > 4 N(h-4), N(h) > 8 N(h-6), ...
 - $\operatorname{So} N(h) > 2^{i} N(h 2i)$
 - If we choose $i = \frac{h-1}{2}$: $N(h) > 2^{\frac{h-1}{2}} N\left(h 2\left(\frac{h-1}{2}\right)\right) = 2^{\frac{h-1}{2}} N(1) = 2^{\frac{h+1}{2}}$, then $h < 2\log(N(h)) 1$
 - So the height of an AVL tree is $O(\log n)$

Universiteit Utrecht

Insertion in an AVL tree

- Insertion is as in a binary search tree: always done by expanding a node
- Example: insert 10 in the following AVL tree

Unbalanced after insertion

- Let w be the inserted node (here 10)
- Let z be the first unbalanced ancestor of w (here 11)
- Let y be the child of z with higher height (must be an ancestor of w) (here 8)
- Let x be the child of y with higher height (must be an ancestor of w, or w itself) (here 9)

6

8

- Case 1: single rotation
- Perform the rotations needed to make y the top most node of the z-y-x sub-tree

• Symmetric case

Case 2: double rotation

• Symmetric case

Tri-node restructuring - Summary

Removal in an AVL tree

- Removal begins as in a binary search tree, which means the node removed will become an *empty* node
- Example: remove 5 in the following AVL tree

Unbalanced after removal

- Let w be the parent of the removed node (here 4)
- Let z be the first unbalanced ancestor of w (here 6)
- Let y be the child of z with higher height (is now not an ancestor of w) (here 11)
- Let x be
 - the child of y with higher height if heights are different, or
 - the child of y on the same side as y if heights are equal (here 14)

Rebalancing after a removal

- Performs rotations to make **y** the top most of the **z-y-x** tree
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root is reached

Repeated rebalancing

• Example: remove 4

Repeated balancing

Running times for AVL trees

- Finding a value takes $O(\log n)$ time
 - because height of a tree is always $O(\log n)$
- Traversal of the whole set takes O(n) time
- Insertion takes $O(\log n)$ time
 - Initial find takes $O(\log n)$ time
 - 0 or 1 rebalancing of the tree, maintaining height takes $O(\log n)$ time

• Removal takes $O(\log n)$ time

- Initial find takes $O(\log n)$ time
- 0 or more rebalancing of the tree, maintaining height takes $O(\log n)$ time

AVL trees vs. hash tables

- In an AVL tree, insert/delete/search is $O(\log n)$ time, in a hash table they take O(1) time in practice
- In an AVL tree, searching for the smallest value $\ge x$ takes $O(\log n)$ time, in a hash table it takes a linear time
- Enumerating the set in order takes O(n) time in an AVL tree, in a hash table it cannot be done quickly: $O(n \log n)$
- Finding the number of values between given x and y takes O(log n) time with a simple variation of an AVL tree, in a hash table it takes linear time
- An AVL tree is more versatile than a hash table

Other trees

- BB[α]-tree are not height-balanced but weight-balanced. Height is also O(log n)
- Red-black trees are balanced with a different scheme and also have height O(log n)
- For background storage, **B-trees** exist and have a degree higher than two (more than 2 children)
- For 2- and higher-dimensional data, various trees exist
 - Kd-trees
 - Quadtrees and octrees
 - BSP-trees
 - Range trees
 - R-trees

