
Elementary maths for GMT

Algorithm analysis

Trees

Part I: Binary Search Trees

Elementary maths for GMT – Algorithm analysis - Trees

• Analyzing data structures

• Example: binary search trees

• Overview

– Definition

– Properties

– Operations

• Analyzing properties and running times of operations

3

Goal

Elementary maths for GMT – Algorithm analysis - Trees

• Array

– fast searching, slow insertion

• Linked list

– slow searching, fast insertion

Storing and modifying data

20 34 29 17 30 48

17 20 29 30 34 48

19

20 34 29 17 30 48

17 19 20 29 30 34 48

Elementary maths for GMT – Algorithm analysis - Trees 5

Data structures for maintaining sets

Search Insert

Unsorted array Θ(𝑛) Θ(1)

Sorted array Θ(log 𝑛) Θ(𝑛)

Unsorted list Θ(𝑛) Θ(1)

Sorted list Θ(𝑛) Θ(𝑛)

Balanced search tree Θ(log 𝑛) Θ(log 𝑛)

Elementary maths for GMT – Algorithm analysis - Trees

• Each of the n nodes contains

– data (number, object, etc.)

– pointers to its children (themselves trees)

• Primitives operations

– Accessing data: 𝑂(1) time

– Traversing link: 𝑂(1) time

6

Trees

18 53 23 99

7

80 41 2

16

22

Elementary maths for GMT – Algorithm analysis - Trees

• Every node has only 2 children

– children can be dummies

7

Binary trees

18 23 99

80 41

16

22

Elementary maths for GMT – Algorithm analysis - Trees

• Binary trees with “comparable” values

• For a node with value x:

– Left sub-tree contains values < 𝑥

– Right sub-tree contains values ≥ 𝑥

8

Binary search trees

6

4 8

1 5 6 9

Elementary maths for GMT – Algorithm analysis - Trees

• The height h of a tree is the length of the longest path

• Property of the height: 0 ≤ ℎ ≤ 𝑛 − 1

• Example

– height = 4

9

Tree property - Height

64

33 80

28 88 42 77

37 97

41

75

Elementary maths for GMT – Algorithm analysis - Trees 10

Binary tree property - Height

min

𝑛 − 1

max

log 𝑛
2

1

1

1

1

…

1

0

1

2

3

…

h

1

2

4

…

2h

0

1

2

…

h

Elementary maths for GMT – Algorithm analysis - Trees

• Example in a binary search tree: searching for 7

– Start at root

– At every node:

• Check if you found it

• Otherwise choose left or right child

according to value in the current node

– Until you find the value or

you are at a leaf node

• Running time is 𝑂(ℎ)

11

Searching for an element

6

4 8

1 5 6 9

Elementary maths for GMT – Algorithm analysis - Trees

• Example in a binary search tree: inserting 7

– First search for the value 7 (previous slide)

– If already present, then nothing to do

– Else replace the dummy node

• Running time is 𝑂(ℎ)

12

Inserting an element

6

4 8

1 5 6 9

7

Elementary maths for GMT – Algorithm analysis - Trees

• Visit the nodes sequentially

– Running time 𝑂 𝑛

13

In-order tree traversal

6

4 8

1 5 6 9

x

LC RC

• Example when storing
value x in-between
visiting the children
– {1, 4, 5, 6, 6, 8, 9}

Elementary maths for GMT – Algorithm analysis - Trees

• Example in a binary search tree: removing 7

– First search for the value 7

– If node has at least one dummy node as a child, delete node and

attach other child to parent

14

Removing an element (1 / 3)

6

4 8

1 5 7 9

Elementary maths for GMT – Algorithm analysis - Trees

• Example in a binary search tree: removing 8

– Search for 8

– If left (resp. right) child is a dummy node, attach right (resp. left)

child to parent

15

Removing an element (2 / 3)

4

1 5 9

8

6

9

Elementary maths for GMT – Algorithm analysis - Trees

• Example in a binary search tree: removing 4

– Search for 4

– Find in-order successor (here 5)

• it will always exists and its left child

will always be a dummy node

– Replace the node to remove with

the successor node

– Remove successor in the previously

described way

• Running time to find the in-order successor is 𝑂(ℎ)

16

Removing an element (3 / 3)

4 5

6

8

1 6 9 5

Elementary maths for GMT – Algorithm analysis - Trees 17

Summary on binary search trees

Parameter / Operation Property / Time

Height h log 𝑛2 ≤ ℎ ≤ 𝑛 − 1

Accessing data, traversing a link 𝑂(1)

In-order traversal 𝑂(𝑛)

Search, insertion and removal 𝑂(ℎ)

Part II: AVL trees

Elementary maths for GMT – Algorithm analysis - Trees

• An AVL tree (Adelson-Velskii Landis) is a binary search

tree where for every internal node v, the heights of the

children of v can differ at most by 1

• Example where the heights are shown next to the nodes

19

AVL tree: a balanced binary tree

6

4 11

5 8 14

7 9

0

1

3

0 0

0 1

2

Elementary maths for GMT – Algorithm analysis - Trees

• Property: the height of an AVL tree storing n keys is
𝑂(𝑙𝑜𝑔 𝑛)

• Proof: let 𝑁(ℎ) be the minimum number of internal nodes
of an AVL tree of height h
– 𝑁 0 = 1 and 𝑁 1 = 2

– For ℎ > 1, an AVL tree of height h contains at least a root node, one
AVL sub-tree of height h – 1, and one AVL sub-tree of height
h – 2, so 𝑁 ℎ = 1 + 𝑁 ℎ − 1 + 𝑁(ℎ − 2)

– Since 𝑁 ℎ − 1 > 𝑁(ℎ − 2), we have 𝑁 ℎ > 2 𝑁(ℎ − 2), and so
𝑁 ℎ > 2 𝑁(ℎ − 2), 𝑁 ℎ > 4 𝑁 ℎ − 4 , 𝑁 ℎ > 8 𝑁 ℎ − 6 , …

– So 𝑁 ℎ > 2𝑖𝑁(ℎ − 2𝑖)

– If we choose 𝑖 =
ℎ−1

2
: 𝑁 ℎ > 2

ℎ−1

2 𝑁 ℎ − 2(
ℎ−1

2
) = 2

ℎ−1

2 𝑁 1 = 2
ℎ+1

2 ,

then ℎ < 2 log 𝑁(ℎ) − 1

– So the height of an AVL tree is 𝑂(log 𝑛)

20

Height of an AVL tree

Elementary maths for GMT – Algorithm analysis - Trees

• Insertion is as in a binary search tree: always done by

expanding a node

• Example: insert 10 in the following AVL tree

21

Insertion in an AVL tree

6

4 11

5 8 14

7 9

6

4 11

5 8 14

7 9

10

unbalanced!

Elementary maths for GMT – Algorithm analysis - Trees

• Let w be the inserted node (here 10)

• Let z be the first unbalanced ancestor of w (here 11)

• Let y be the child of z with higher height

(must be an ancestor of w) (here 8)

• Let x be the child of y with higher height

(must be an ancestor of w, or w itself)

(here 9)

22

Unbalanced after insertion

6

4 11

5 8 14

7 9

10 w

z

y

x

Elementary maths for GMT – Algorithm analysis - Trees

• Case 1: single rotation

• Perform the rotations needed to make y the top most node

of the z-y-x sub-tree

23

Tri-node restructuring

z

y

x

T0

T1

T2 T3

y

x z

T3 T2 T0 T1

Elementary maths for GMT – Algorithm analysis - Trees

• Symmetric case

24

Tri-node restructuring

z

y

x

T3

T2

T1 T0

y

z x

T3 T2 T0 T1

Elementary maths for GMT – Algorithm analysis - Trees

• Case 2: double rotation

25

Tri-node restructuring

z

y

x
T0

T3

T1 T2

x

y z

T3 T2 T0 T1

Elementary maths for GMT – Algorithm analysis - Trees

• Symmetric case

26

Tri-node restructuring

z

y

x
T3

T0

T2 T1

x

z y

T3 T2 T0 T1

Elementary maths for GMT – Algorithm analysis - Trees 27

Tri-node restructuring - Summary

Elementary maths for GMT – Algorithm analysis - Trees

• Removal begins as in a binary search tree, which means

the node removed will become an empty node

• Example: remove 5 in the following AVL tree

28

Removal in an AVL tree

unbalanced! 6

4 11

5 8 14

7 9
17

6

4 11

8 14

7 9
17

Elementary maths for GMT – Algorithm analysis - Trees

• Let w be the parent of the removed node (here 4)

• Let z be the first unbalanced ancestor of w (here 6)

• Let y be the child of z with higher height

(is now not an ancestor of w) (here 11)

• Let x be

– the child of y with higher height if

heights are different, or

– the child of y on the same side

as y if heights are equal

(here 14)

29

Unbalanced after removal

w

z

y

x

6

4 11

8 14

7 9
17

Elementary maths for GMT – Algorithm analysis - Trees

• Performs rotations to make y the top most of the z-y-x tree

• As this restructuring may upset the balance of another

node higher in the tree, we must continue checking for

balance until the root is reached

30

Rebalancing after a removal

w

z

y

x

6

4 11

8 14

7 9
17

11

6 14

8
17

7 9

4

Elementary maths for GMT – Algorithm analysis - Trees

• Example: remove 4

31

Repeated rebalancing

11

6 19

8 22

7 26

4 15

18 12

17

11

6 19

8 22

7 26

15

18 12

17

unbalanced!

Elementary maths for GMT – Algorithm analysis - Trees 32

Repeated balancing

11

7 19

8 22 6

26

15

18 12

17

unbalanced!

Elementary maths for GMT – Algorithm analysis - Trees

• Finding a value takes 𝑂(log 𝑛) time

– because height of a tree is always 𝑂(log 𝑛)

• Traversal of the whole set takes 𝑂(𝑛) time

• Insertion takes 𝑂(log 𝑛) time

– Initial find takes 𝑂(log 𝑛) time

– 0 or 1 rebalancing of the tree, maintaining height takes 𝑂(log 𝑛)

time

• Removal takes 𝑂(log 𝑛) time

– Initial find takes 𝑂(log 𝑛) time

– 0 or more rebalancing of the tree, maintaining height takes 𝑂(log 𝑛)

time

33

Running times for AVL trees

Elementary maths for GMT – Algorithm analysis - Trees

• In an AVL tree, insert/delete/search is 𝑂(log 𝑛) time, in a hash
table they take 𝑂(1) time in practice

• In an AVL tree, searching for the smallest value ≥ 𝑥 takes
𝑂(log 𝑛) time, in a hash table it takes a linear time

• Enumerating the set in order takes 𝑂(𝑛) time in an AVL tree, in a
hash table it cannot be done quickly: 𝑂(𝑛 log 𝑛)

• Finding the number of values between given x and y takes
𝑂(log 𝑛) time with a simple variation of an AVL tree, in a hash
table it takes linear time

 An AVL tree is more versatile than a hash table

34

AVL trees vs. hash tables

Elementary maths for GMT – Algorithm analysis - Trees

• BB[α]-tree are not height-balanced but weight-balanced.

Height is also 𝑂(log 𝑛)

• Red-black trees are balanced with a different scheme and

also have height 𝑂(log 𝑛)

• For background storage, B-trees exist and have a degree

higher than two (more than 2 children)

• For 2- and higher-dimensional data, various trees exist

– Kd-trees

– Quadtrees and octrees

– BSP-trees

– Range trees

– R-trees

35

Other trees

