Elementary maths for GMT

Algorithm analysis

Trees

Part I: Binary Search Trees

Goal

- Analyzing data structures
- Example: binary search trees
- Overview
- Definition
- Properties
- Operations
- Analyzing properties and running times of operations

Storing and modifying data

- Array
- fast searching, slow insertion

- Linked list
- slow searching, fast insertion

Data structures for maintaining sets

	Search	Insert
Unsorted array	$\Theta(n)$	$\Theta(1)$
Sorted array	$\Theta(\log n)$	$\Theta(n)$
Unsorted list	$\Theta(n)$	$\Theta(1)$
Sorted list	$\Theta(n)$	$\Theta(n)$
Balanced search tree	$\Theta(\log n)$	$\Theta(\log n)$

Trees

- Each of the \mathbf{n} nodes contains
- data (number, object, etc.)
- pointers to its children (themselves trees)
- Primitives operations
- Accessing data: O(1) time
- Traversing link: O (1) time

Binary trees

- Every node has only 2 children
- children can be dummies

Binary search trees

- Binary trees with "comparable" values
- For a node with value x :
- Left sub-tree contains values $<x$
- Right sub-tree contains values $\geq x$

Tree property - Height

- The height h of a tree is the length of the longest path
- Property of the height: $0 \leq h \leq n-1$
- Example
- height $=4$

Binary tree property - Height

max

$$
\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 2 & 1 \\
0 & 3 & 1 \\
\vdots & \cdots & \cdots \\
\vdots & h & 1 \\
0 & & 1
\end{array}
$$

$$
\min
$$

Searching for an element

- Example in a binary search tree: searching for 7
- Start at root
- At every node:
- Check if you found it
- Otherwise choose left or right child according to value in the current node
- Until you find the value or you are at a leaf node

- Running time is $O(h)$

Inserting an element

- Example in a binary search tree: inserting 7
- First search for the value 7 (previous slide)
- If already present, then nothing to do
- Else replace the dummy node
- Running time is $O(h)$

In-order tree traversal

- Visit the nodes sequentially
- Running time $O(n)$

- Example when storing value x in-between visiting the children
- $\{1,4,5,6,6,8,9\}$

Removing an element

- Example in a binary search tree: removing 7
- First search for the value 7
- If node has at least one dummy node as a child, delete node and attach other child to parent

Removing an element

- Example in a binary search tree: removing 8
- Search for 8
- If left (resp. right) child is a dummy node, attach right (resp. left) child to parent

Removing an element

- Example in a binary search tree: removing 4
- Search for 4
- Find in-order successor (here 5)
- it will always exists and its left child will always be a dummy node
- Replace the node to remove with the successor node
- Remove successor in the previously described way

- Running time to find the in-order successor is $O(h)$

Summary on binary search trees

Parameter / Operation	Property / Time
Height h	$\left\lfloor{ }^{2} \log n\right\rfloor \leq h \leq n-1$
Accessing data, traversing a link	$O(1)$
In-order traversal	$O(n)$
Search, insertion and removal	$O(h)$

Part II: AVL trees

AVL tree: a balanced binary tree

- An AVL tree (Adelson-Velskii Landis) is a binary search tree where for every internal node v, the heights of the children of v can differ at most by 1
- Example where the heights are shown next to the nodes

Height of an AVL tree

- Property: the height of an AVL tree storing n keys is $O(\log n)$
- Proof: let $N(h)$ be the minimum number of internal nodes of an AVL tree of height h
$-N(0)=1$ and $N(1)=2$
- For $h>1$, an AVL tree of height h contains at least a root node, one AVL sub-tree of height $h-1$, and one AVL sub-tree of height $h-2$, so $N(h)=1+N(h-1)+N(h-2)$
- Since $N(h-1)>N(h-2)$, we have $N(h)>2 N(h-2)$, and so $N(h)>2 N(h-2), N(h)>4 N(h-4), N(h)>8 N(h-6), \ldots$
- So $N(h)>2^{i} N(h-2 i)$
- If we choose $i=\frac{h-1}{2}: N(h)>2^{\frac{h-1}{2}} N\left(h-2\left(\frac{h-1}{2}\right)\right)=2^{\frac{h-1}{2}} N(1)=2^{\frac{h+1}{2}}$, then $h<2 \log (N(h))-1$
- So the height of an AVL tree is $O(\log n)$

Insertion in an AVL tree

- Insertion is as in a binary search tree: always done by expanding a node
- Example: insert 10 in the following AVL tree

Unbalanced after insertion

- Let w be the inserted node (here 10)
- Let \mathbf{z} be the first unbalanced ancestor of \mathbf{w} (here 11)
- Let \mathbf{y} be the child of \mathbf{z} with higher height (must be an ancestor of w) (here 8)
- Let \mathbf{x} be the child of \mathbf{y} with higher height (must be an ancestor of \mathbf{w}, or \mathbf{w} itself) (here 9)

Tri-node restructuring

- Case 1: single rotation
- Perform the rotations needed to make y the top most node of the $\mathbf{z - y} \mathbf{- x}$ sub-tree

Tri-node restructuring

- Symmetric case

Tri-node restructuring

- Case 2: double rotation

Tri-node restructuring

- Symmetric case

Tri-node restructuring - Summary

Left Right Case

Right Left Case

Left Left Case

Right Right Case

Balanced

Removal in an AVL tree

- Removal begins as in a binary search tree, which means the node removed will become an empty node
- Example: remove 5 in the following AVL tree

Unbalanced after removal

- Let w be the parent of the removed node (here 4)
- Let z be the first unbalanced ancestor of \mathbf{w} (here 6)
- Let \mathbf{y} be the child of \mathbf{z} with higher height (is now not an ancestor of \mathbf{w}) (here 11)
- Let x be
- the child of \mathbf{y} with higher height if heights are different, or
- the child of \mathbf{y} on the same side as y if heights are equal (here 14)

Rebalancing after a removal

- Performs rotations to make \mathbf{y} the top most of the $\mathbf{z - y} \mathbf{- x}$ tree
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root is reached

Repeated rebalancing

- Example: remove 4

Repeated balancing

Running times for AVL trees

- Finding a value takes $O(\log n)$ time
- because height of a tree is always $O(\log n)$
- Traversal of the whole set takes $O(n)$ time
- Insertion takes $O(\log n)$ time
- Initial find takes $O(\log n)$ time
- 0 or 1 rebalancing of the tree, maintaining height takes $O(\log n)$ time
- Removal takes $O(\log n)$ time
- Initial find takes $O(\log n)$ time
- 0 or more rebalancing of the tree, maintaining height takes $O(\log n)$ time

AVL trees vs. hash tables

- In an AVL tree, insert/delete/search is $O(\log n)$ time, in a hash table they take $O(1)$ time in practice
- In an AVL tree, searching for the smallest value $\geq x$ takes $O(\log n)$ time, in a hash table it takes a linear time
- Enumerating the set in order takes $O(n)$ time in an AVL tree, in a hash table it cannot be done quickly: $O(n \log n)$
- Finding the number of values between given x and y takes $O(\log n)$ time with a simple variation of an AVL tree, in a hash table it takes linear time
> An AVL tree is more versatile than a hash table

Other trees

- BB[a]-tree are not height-balanced but weight-balanced. Height is also $O(\log n)$
- Red-black trees are balanced with a different scheme and also have height $O(\log n)$
- For background storage, B-trees exist and have a degree higher than two (more than 2 children)
- For 2- and higher-dimensional data, various trees exist
- Kd-trees
- Quadtrees and octrees
- BSP-trees
- Range trees
- R-trees

