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Part I: Binary Search Trees 
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• Analyzing data structures 

• Example: binary search trees 

• Overview 

– Definition 

– Properties 

– Operations 

• Analyzing properties and running times of operations 
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Goal 
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• Array 

– fast searching, slow insertion 

 

 

 

• Linked list 

– slow searching, fast insertion 

Storing and modifying data 
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Data structures for maintaining sets 

Search Insert 

Unsorted array Θ(𝑛) Θ(1) 

Sorted array Θ(log 𝑛) Θ(𝑛) 

Unsorted list Θ(𝑛) Θ(1) 

Sorted list Θ(𝑛) Θ(𝑛) 

Balanced search tree Θ(log 𝑛) Θ(log 𝑛) 



Elementary maths for GMT – Algorithm analysis - Trees 

• Each of the n nodes contains 

– data (number, object, etc.) 

– pointers to its children (themselves trees) 

• Primitives operations 

– Accessing data: 𝑂(1) time 

– Traversing link: 𝑂(1) time 
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Trees 
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• Every node has only 2 children 

– children can be dummies 
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Binary trees 
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• Binary trees with “comparable” values 

• For a node with value x: 

– Left sub-tree contains values < 𝑥 

– Right sub-tree contains values ≥ 𝑥 
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Binary search trees 
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• The height h of a tree is the length of the longest path 

• Property of the height: 0 ≤ ℎ ≤ 𝑛 − 1 

• Example 

– height = 4 

9 

Tree property - Height 
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Binary tree property - Height 
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• Example in a binary search tree: searching for 7 

– Start at root 

– At every node: 

• Check if you found it 

• Otherwise choose left or right child 

according to value in the current node 

– Until you find the value or 

you are at a leaf node 

 

• Running time is 𝑂(ℎ) 
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Searching for an element 
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• Example in a binary search tree: inserting 7 

– First search for the value 7 (previous slide) 

– If already present, then nothing to do 

– Else replace the dummy node 

 

• Running time is 𝑂(ℎ) 
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Inserting an element 
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• Visit the nodes sequentially 

– Running time 𝑂 𝑛  
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In-order tree traversal 
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LC RC 

• Example when storing 
value x in-between 
visiting the children 
– {1, 4, 5, 6, 6, 8, 9} 
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• Example in a binary search tree: removing 7 

– First search for the value 7 

– If node has at least one dummy node as a child, delete node and 

attach other child to parent 
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Removing an element              (1 / 3) 
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• Example in a binary search tree: removing 8 

– Search for 8 

– If left (resp. right) child is a dummy node, attach right (resp. left) 

child to parent 
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Removing an element              (2 / 3) 

4 

1 5 9 

8 

6 

9 



Elementary maths for GMT – Algorithm analysis - Trees 

• Example in a binary search tree: removing 4 

– Search for 4 

– Find in-order successor (here 5) 

• it will always exists and its left child 

will always be a dummy node 

– Replace the node to remove with 

the successor node 

– Remove successor in the previously 

described way 

 

• Running time to find the in-order successor is 𝑂(ℎ) 
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Removing an element              (3 / 3) 
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Summary on binary search trees 

Parameter / Operation Property / Time 

Height h log 𝑛2 ≤ ℎ ≤ 𝑛 − 1 

Accessing data, traversing a link 𝑂(1) 

In-order traversal 𝑂(𝑛) 

Search, insertion and removal 𝑂(ℎ) 



Part II: AVL trees 
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• An AVL tree (Adelson-Velskii Landis) is a binary search 

tree where for every internal node v, the heights of the 

children of v can differ at most by 1 

• Example where the heights are shown next to the nodes 

19 

AVL tree: a balanced binary tree 
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• Property: the height of an AVL tree storing n keys is 
𝑂(𝑙𝑜𝑔 𝑛) 

• Proof: let 𝑁(ℎ) be the minimum number of internal nodes 
of an AVL tree of height h 
– 𝑁 0 = 1 and 𝑁 1 = 2 

– For ℎ > 1, an AVL tree of height h contains at least a root node, one 
AVL sub-tree of height h – 1, and one AVL sub-tree of height 
h – 2, so 𝑁 ℎ = 1 + 𝑁 ℎ − 1 + 𝑁(ℎ − 2) 

– Since 𝑁 ℎ − 1 > 𝑁(ℎ − 2), we have 𝑁 ℎ > 2 𝑁(ℎ − 2), and so 
𝑁 ℎ > 2 𝑁(ℎ − 2), 𝑁 ℎ > 4 𝑁 ℎ − 4 , 𝑁 ℎ > 8 𝑁 ℎ − 6 , … 

– So 𝑁 ℎ > 2𝑖𝑁(ℎ − 2𝑖) 

– If we choose 𝑖 =
ℎ−1

2
: 𝑁 ℎ > 2

ℎ−1

2 𝑁 ℎ − 2(
ℎ−1

2
) = 2

ℎ−1

2 𝑁 1 = 2
ℎ+1

2 ,  

then ℎ < 2 log 𝑁(ℎ) − 1 

– So the height of an AVL tree is 𝑂(log 𝑛) 
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Height of an AVL tree 
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• Insertion is as in a binary search tree: always done by 

expanding a node 

• Example: insert 10 in the following AVL tree 
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Insertion in an AVL tree 
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• Let w be the inserted node (here 10) 

• Let z be the first unbalanced ancestor of w (here 11) 

• Let y be the child of z with higher height 

(must be an ancestor of w) (here 8) 

• Let x be the child of y with higher height 

(must be an ancestor of w, or w itself) 

(here 9) 
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Unbalanced after insertion 
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• Case 1: single rotation  

• Perform the rotations needed to make y the top most node 

of the z-y-x sub-tree 
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• Symmetric case 
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Tri-node restructuring 
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• Case 2: double rotation 
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Tri-node restructuring 
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• Symmetric case 
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Tri-node restructuring 
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Tri-node restructuring - Summary 
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• Removal begins as in a binary search tree, which means 

the node removed will become an empty node 

• Example: remove 5 in the following AVL tree 
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Removal in an AVL tree 
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• Let w be the parent of the removed node (here 4) 

• Let z be the first unbalanced ancestor of w (here 6) 

• Let y be the child of z with higher height 

(is now not an ancestor of w) (here 11) 

• Let x be 

– the child of y with higher height if 

heights are different, or 

– the child of y on the same side 

as y if heights are equal 

(here 14) 
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• Performs rotations to make y the top most of the z-y-x tree 

• As this restructuring may upset the balance of another 

node higher in the tree, we must continue checking for 

balance until the root is reached 
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Rebalancing after a removal 
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• Example: remove 4 
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Repeated rebalancing 
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Repeated balancing 
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• Finding a value takes 𝑂(log 𝑛) time 

– because height of a tree is always 𝑂(log 𝑛) 

• Traversal of the whole set takes 𝑂(𝑛) time 

• Insertion takes 𝑂(log 𝑛) time 

– Initial find takes 𝑂(log 𝑛) time 

– 0 or 1 rebalancing of the tree, maintaining height takes 𝑂(log 𝑛) 

time 

• Removal takes 𝑂(log 𝑛) time 

– Initial find takes 𝑂(log 𝑛) time 

– 0 or more rebalancing of the tree, maintaining height takes 𝑂(log 𝑛) 

time 
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Running times for AVL trees 
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• In an AVL tree, insert/delete/search is 𝑂(log 𝑛) time, in a hash 
table they take 𝑂(1) time in practice 

 

• In an AVL tree, searching for the smallest value ≥ 𝑥 takes 
𝑂(log 𝑛) time, in a hash table it takes a linear time 

 

• Enumerating the set in order takes 𝑂(𝑛) time in an AVL tree, in a 
hash table it cannot be done quickly: 𝑂(𝑛 log 𝑛) 

 

• Finding the number of values between given x and y takes 
𝑂(log 𝑛) time with a simple variation of an AVL tree, in a hash 
table it takes linear time 

 

 An AVL tree is more versatile than a hash table 
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AVL trees vs. hash tables 
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• BB[α]-tree are not height-balanced but weight-balanced. 

Height is also 𝑂(log 𝑛) 

• Red-black trees are balanced with a different scheme and 

also have height 𝑂(log 𝑛) 

• For background storage, B-trees exist and have a degree 

higher than two (more than 2 children) 

• For 2- and higher-dimensional data, various trees exist 

– Kd-trees 

– Quadtrees and octrees 

– BSP-trees 

– Range trees 

– R-trees 
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Other trees 


